
WeatherWear: 
Context-Aware Clothing 
Recommendations

SDMAY19-34: Nick Eaton, Will Parr, Tyler Witte, Christian Ehlen, Ethan Wieczorek, Nicus Hicks
1

Advisor / Client: Goce Trajcevski



Team Member Positions

Ethan Wieczorek: Lead Backend Developer

Nickolaus Eaton: Product Manager

Nicus Hicks: Director of Documentation and Reporting

Will Parr: Lead Frontend Developer

Tyler Witte: Lead Software Architect

Christian Ehlen: UI/UX and Quality Assurance Developer
2



Problem 
Statement

Problem

● Ambiguous and inefficient clothing 
selection for weather

● Selecting clothing to pack for trip
● Clothing appropriate for event types

Solution

● Individual wardrobe tracking
● Daily clothing suggestion
● Weather, Calendar, and Location tracker

3



Summary
The WeatherWear mobile app, for iOS and 
Android, leverages React Native, the 
DarkSky API, and an Azure SQL DB 
alongside a clothing-recommendation 
system to give users outfit ideas for the 
current day or packing lists for upcoming 
trips.

4



Market Survey - 
What makes 
this project 
unique?

● Mobile Application
○ Cross-device compatible

● Graphical User Interface (GUI)
○ Intuitive
○ Fast

● Personalized to You
○ Wardrobe
○ Schedule

★ Many other applications focus on style or 
manual choice of outfits.

★ Our application chooses from your clothes 
based on weather and event data

5



Functional 
Requirements

● Google Authentication / Login
● User Request for Clothing Items
● Clothing Managed in Wardrobe
● Context Matching for Weather
● Cross-Device Compatible

6



Non-functional Requirements
● Scalability
● Security
● Usability
● Performance
● Maintainability

7



Design Plan 
and 
Objectives

Assumptions:

● System supports multiple users
● System supports multiple devices per user
● User has consistent internet connection

Limitations:

● System must be connected to internet to function
● Users must have a smartphone or tablet

8



Project Milestones & Management

Phase 1: Planning
Aug 27 -Sep 25

Milestones:
Requirements
Solution Design
Use-cases & market 
survey

Phase 2: Development
Sep 26 - Apr 20

Milestones:
Technical Design
Mockups
Front End UI
User Login and 
Storage
Clothing Prediction
Stable Alpha
Stable Beta
Testing

Phase 3: Release
Apr 21 - May 5

Milestones:
Product Release
Improvements

9



Technology 
Stack and 

Development 
Tools

● DarkSky API
● Azure Cloud Services
● Google Firebase
● Google Authentication
● React Native
● ExpressJS
● Axios

10



High Level Architecture
● User Login with Google

● WeatherWear mobile app

● App interacts with Node.js backend

● Azure SQL DB and Firebase authentication 
for user and clothing data

● DarkSky API for detailed weather data

11



Functional Decomposition

WeatherWear app:
● Trip Planning Request
● Clothing Recommendation 

Request
Node.js Back-end:

● RESTful API
● Recommendation Algorithms

Weather:
● Dark Sky API
● React-Native-Weather

Clothing:
● Azure SQL Database

12



Detailed Design

13



Login and Home Page (Front-End)

14



Daily Outfit and Wardrobe Management

15



Trip Management and User Settings

16



Demonstration - Login, Closet, Profile

17

Login, Closet, Profile Add Clothing

http://www.youtube.com/watch?v=2yrKk2v672k
http://www.youtube.com/watch?v=DzFGKF5zkHk


18

Demonstration - Outfit and Trip Planning

http://www.youtube.com/watch?v=HuIYBAW43rk


Applicable Standards & Best Practices

● Agile Development Methodology : Efficient task scheduling per team member
● Testing using Enzyme and Jest, Node.js unit testing
● Git Monorepo with Dev branch
● Team Members own unique positions & user stories
● Merge request code reviews

19



Testing Plan Testing Classifications:

● Unit Testing

● System and Integration Testing

● Performance and Stress Testing

● User Acceptance Testing

● Beta Testing

20



21



Test Plan - Functional

Integration Validation

Location and 
Weather Data

● Correct Location
● Correct Weather

Database 
Relations

● Correct Clothing per user
● Update User Settings

Device 
cross-compatibility

● iOS and Android both function the same

Clothing 
Categorization

● Correct Categorization

22



Test Plan - Non-Functional

Integration Validation

Performance ● Authentication
● Recommendations

Security ● Administrative functions
● Passwords
● Clothing access

Usability ● Temperature settings

Compatibility ● APIs

23



Results of 
Testing

24

System Load Testing using SMARTBEAR LoadUI
Tests run: 2741
Avg. Response Time: 72 ms



Risks & Mitigation
● Account information

○ Mitigation: Google Login
● Loss of local data

○ Mitigation: Data stored on Azure database
● Secure access to data

○ Mitigation: Google Security/Authentication

25



Resource & Cost 
Estimate

Resources Required:

● Deployment Platforms
● Azure SQL database
● Server system

Costs:

● API query limits when exceeded
● Database costs for security & size
● Apple Developer License

26



Lessons Learned
● Team Organization
● Project Scope
● System Development
● Task Sharing
● Risk Mitigation

27



Future: Potential 
Directions
● Style Recommendations
● Integration with more diverse clothing types
● E-Commerce/Advertising integration
● Camera AI Clothing Recognition
● Social Media Integration
● Distributed Database

28



29


