[@ Camera wi! =

YAV
AQA

Weather Wear

Powered by DarkSky Api

Google Login

(ill Parr, Tyler Witte, Christian E 1 Wieczorek, Nicus Hicks

Team Member Positions

Ethan Wieczorek: Lead Backend Developer
Nickolaus Eaton: Product Manager

Nicus Hicks: Director of Documentation and Reporting
Will Parr: Lead Frontend Developer

Tyler Witte: Lead Software Architect

Christian Ehlen: Ul/UX and Quality Assurance Developer

Problem
Statement

Problem

e Ambiguous and inefficient clothing
selection for weather

e Selecting clothing to pack for trip

e Clothing appropriate for event types

Solution

e Individual wardrobe tracking
e Daily clothing suggestion
e \Weather, Calendar, and Location tracker

Y, ~ \4
(o)

Weather Wear

Google Login

The WeatherWear mobile app, for iOS and
Android, leverages React Native, the
DarkSky API, and an Azure SQL DB
alongside a clothing-recommendation
system to give users outfit ideas for the
current day or packing lists for upcoming
trips.

Market Survey -
What makes
this project
unique?

Mobile Application
o Cross-device compatible

Graphical User Interface (GUI)

o Intuitive

o Fast
Personalized to You

o Wardrobe

o Schedule
Many other applications focus on style or
manual choice of outfits.
Our application chooses from clothes
based on weather and event data

Functional
Requirements

Google Authentication / Login
User Request for Clothing Items
Clothing Managed in Wardrobe
Context Matching for Weather
Cross-Device Compatible

Non-functional Requirements

Scalability
Security
Usability
Performance
Maintainability

DeSign Plan Assumptions:

and e System supports multiple users
u = e System supports multiple devices per user
Objectives ystem supports muiip be
e User has consistent internet connection

Limitations:

e System must be connected to internet to function
e Users must have a smartphone or tablet

Project Milestones & Management

ﬁhase 1: Planning \
Aug 27 -Sep 25

Requirements
Solution Design
Use-cases & market
survey

/Phase 2: Development\

Sep 26 - Apr 20

Technical Design
Mockups

Front End Ul

User Login and
Storage

Clothing Prediction
Stable Alpha
Stable Beta

_

\\Testing /

ﬁhase 3: Release \

Apr21-May 5

Product Release
Improvements

Technology
Stack and
Development
Tools

DarkSky API

Azure Cloud Services
Google Firebase
Google Authentication
React Native
ExpressdS

Axios

10

High Level Architecture

User Login with Google
Weather\WWear mobile app
App interacts with Node.js backend

Azure SQL DB and Firebase authentication
for user and clothing data

DarkSky API for detailed weather data

Clothing Inventory
& Y Firebase
‘ WeatherWear App ‘

1

WeatherWear app: Weather AP
[J

Trip Planning Request 5
e Clothing Recommendation
Request
Node.js Back-end: NodejeBackend | yirre Requests |
e RESTful AP citing Recommendatin
e Recommendation Algorithms 5
Weather:

e Dark Sky API F\
[] React-Native-Weather [= React-Native] Firebase > User

Authentication
Clothing:
e Azure SQL Database

Clothing

Detailed Design

DarkSky
API | DarkSky API | | Google Location AP |
7 k /
Daily Outfit / Clothing_Management Trip Management 1 / User Settings
Logic Azure SQL DB
Suggestion Add Clothiqg/ Azure SQL DB
Clean Clothing Set Up Trip User Settings/
A) Temperature Pref
: ; 3
; v 5 :
Home Page
L > e : :
Navigation
Daily Outfit [’
Clothing Management
Trip Planning
User Settings
A
y
Login/Logout
«Firebases

Email/Password

Login and Home Page (Front-End)

Home Page
Navigation
Daily Outfit
Clothing Management
Trip Planning
User Setlings

I

Login/Logout

«Firebases
Email/Password

14

Daily Outfit and Wardrobe Management

DarkSky
API
7
Daily Qutfit / Clothing Management
; Azure SQL DB
Logic
3 Add Clothing/
Swggesiion Clean Clothing
X ?
v
Home Page
.................................... >
Navigation
Daily Outiit
Clothing Management
Trip Planning
User Settings

15

Trip Management and User Settings

DarkSky API | | Google Location API
\ /
nagement Trip Management 1 / User Settings
Azure SQL DB
Add Clothing/ Azure SQL DB
Clean Clothing Set Up Trip User Settings/
Iy Temperature Pref
A
v E 5
7 : .
Home Page :

Navigation
Daily Outiit

Clothing Management

Trip Planning
User Settings

16

Demonstration - Login, Closet, Profile
Login, Closet, Profile Add Clothing

. OWO Do Wi 26%1 656 Q= m 0O T o Wi 2151 716

—

Close

e sleev sleeve sleeves &

gwertyuiop

asdfagh k|

& z xc vbnm@E

. ® o8

http://www.youtube.com/watch?v=2yrKk2v672k
http://www.youtube.com/watch?v=DzFGKF5zkHk

Demonstration - Outfit and Trip Planning

gwertyuiop
asdfagh k.|
3z x ¢cvbnm &

. ©)

http://www.youtube.com/watch?v=HuIYBAW43rk

Applicable Standards & Best Practices

Agile Development Methodology : Efficient task scheduling per team member
Testing using Enzyme and Jest, Node.js unit testing

Git Monorepo with Dev branch

Team Members own unique positions & user stories

Merge request code reviews

19

Testing Classifications:

Unit Testing

System and Integration Testing
Performance and Stress Testing
User Acceptance Testing

Beta Testing

20

Nick Will Ethan

Tester Tester Tester
| l
Tester Tester Tester
| ; [{
Beta Feedback
Channel
Tester Tester Tester
[[7 |
Tester Tester Tester

Christian Nicus Tyler

21

Test Plan - Functional

Location and °
Weather Data °
Database °
Relations °

Device °
cross-compatibility

Clothing °
Categorization

Correct Location
Correct Weather

Correct Clothing per user
Update User Settings

iOS and Android both function the same

Correct Categorization

22

Test Plan - Non-Functional

Performance

Security

Usability

Compatibility

Authentication
Recommendations

Administrative functions
Passwords
Clothing access

Temperature settings

APIs

23

System Load Testing using SMARTBEAR LoadUI
Results of Tests run: 2741

Avg. Response Time: 72 ms

]
es I n g POST /users/CreateUser 362.563 ms - 21

{ host:

id:
connection: }
GET /users/GetUser 49.866 ms - 174

PUT /users/UpdateUser 50.797 ms - -
PUT /users/UpdateUserLocation 40.611 ms -

{ host:

id:
connection: }
GET /users/GetUser 39.396 ms - 162

DELETE /users/DeleteUser 41.636 ms - -

Clothing

Connected to SQL Server

HEADERS: {"host":"127.0.0.1:50847","accept-encoding”:"gzip, deflate”,"user-agent”:"node-superagent/3.8.3","id":"12345
67890", "content-type”: " ion/j content-length”:"44","connection”: "close"}

BODY: {"firstname”: }
Results: { recordsets:
recordset: [{ id:

output: {3},
rowsAffected: [1] }

POST /users/CreateUser 292.617 ms

POST /clothing/AddClothing 42.435 ms - 11

1
@ vUs OTime taken @ Err

/clothing/GetAllClothing 43.378 ms - 172

/clothing/GetAllClothingNames 36.780 ms - 21

/clothing/GetItemInformation 39.921 ms - 172
Test SuiteS: 1@ p ESQd, 10 total /clothing/GetClothingByCategory 42.944 ms - 172
Tests: 16 passed, 10 total [EIEE B
Snapshots: 10 passed, 10 total
Time: 10.065s

DELETE /clothing/DeleteClothing 47.412 ms - 11
GET /clothing/GetClothingRecommendation 562.142 ms - 228
POST /clothing/GetTripRecommendation 386.584 ms - 633

DELETE /users/DeleteUser 41.356 ms -

Risks & Mitigation

e Account information

o Mitigation: Google Login
e Loss of local data

o Mitigation: Data stored on Azure database
e Secure access to data

o Mitigation: Google Security/Authentication

& Signin with Google

’ Firebase

25

Resources Required:

e Deployment Platforms
e Azure SQL database
e Server system

Costs:

e API query limits when exceeded
e Database costs for security & size
e Apple Developer License

Lessons Learned

Team Organization
Project Scope
System Development
Task Sharing

Risk Mitigation

Potential
Directions

Style Recommendations

Integration with more diverse clothing types
E-Commerce/Advertising integration
Camera Al Clothing Recognition

Social Media Integration

Distributed Database

28

Q&A

